On the Stability of Deinoxanthin Exposed to Mars Conditions during a Long-Term Space Mission and Implications for Biomarker Detection on Other Planets
نویسندگان
چکیده
Outer space, the final frontier, is a hostile and unforgiving place for any form of life as we know it. The unique environment of space allows for a close simulation of Mars surface conditions that cannot be simulated as accurately on the Earth. For this experiment, we tested the resistance of Deinococcus radiodurans to survive exposure to simulated Mars-like conditions in low-Earth orbit for a prolonged period of time as part of the Biology and Mars experiment (BIOMEX) project. Special focus was placed on the integrity of the carotenoid deinoxanthin, which may serve as a potential biomarker to search for remnants of life on other planets. Survival was investigated by evaluating colony forming units, damage inflicted to the 16S rRNA gene by quantitative PCR, and the integrity and detectability of deinoxanthin by Raman spectroscopy. Exposure to space conditions had a strong detrimental effect on the survival of the strains and the 16S rRNA integrity, yet results show that deinoxanthin survives exposure to conditions as they prevail on Mars. Solar radiation is not only strongly detrimental to the survival and 16S rRNA integrity but also to the Raman signal of deinoxanthin. Samples not exposed to solar radiation showed only minuscule signs of deterioration. To test whether deinoxanthin is able to withstand the tested parameters without the protection of the cell, it was extracted from cell homogenate and exposed to high/low temperatures, vacuum, germicidal UV-C radiation, and simulated solar radiation. Results obtained by Raman investigations showed a strong resistance of deinoxanthin against outer space and Mars conditions, with the only exception of the exposure to simulated solar radiation. Therefore, deinoxanthin proved to be a suitable easily detectable biomarker for the search of Earth-like organic pigment-containing life on other planets.
منابع مشابه
Radiation resistance of biological reagents for in situ life detection.
Life on Mars, if it exists, may share a common ancestry with life on Earth derived from meteoritic transfer of microbes between the planets. One means to test this hypothesis is to isolate, detect, and sequence nucleic acids in situ on Mars, then search for similarities to known common features of life on Earth. Such an instrument would require biological and chemical components, such as polyme...
متن کاملTextual Enhancement across Linguistic Structures: EFL Learners' Acquisition of English Forms
The benefits of textual input enhancement in the acquisition of linguistic forms have produced mixed results in SLA literature. The present study investigates the effects of textual enhancement on adult foreign language intake of two English linguistic forms-subjunctive mood and inversion structures-to explore the role of the type of linguistic items in input enhancement studies. It also invest...
متن کاملشبیهسازی اثر تشعشات فضایی بر پلاکتهای خون
The risk of leukemia and other radiation oriented diseases for astronauts increases with exposure to cosmic radiation. During the space missions, the blood and immune system change and the bones are affected by osteoporosis. In this research, a model, based on the human blood system, is presented for the study of the microgravity and the space radiation effects on the blood cells. This model is...
متن کاملSurface Exploration Metrics of a Long Duration Polar Analogue Study: Implications for Future Moon and Mars Missions
To prepare for the return of humans to the Moon by 2020 and the eventual human exploration of Mars, it is important to gain a better understanding of the logistical requirements for living, working, and exploring on the surface of another planet. Given humanity’s limited experience with human planetary surface research (i.e., the Apollo missions), high fidelity simulations in analogue environme...
متن کاملThe Effect of Starvation Stress on the Protein Profiles in Flexibacter chinensis
Background: Analysis of many proteins produced during the transition into the stationary phase and under stress conditions (including starvation stress) demonstrated that a number of novel proteins were induced in common to each stress and could be the reason for cross-protection in bacterial cells. It is necessary to investigate the synthesis of these proteins during different stress condition...
متن کامل